Abstract
This article introduces an extension of standard geometric programming (GP) problems, called quasi geometric programming (QGP) problems. The idea behind QGP is very simple, it means that a problem becomes a GP problem when some variables are kept constant. The consideration of this particular kind of nonlinear and possibly non-smooth optimization problem is motivated by the fact that many engineering problems can be formulated, or well approximated, as a QGP problem. However, solving a QGP problem remains a difficult task due to its intrinsic nonconvex nature. This is why this article introduces some simple approaches for easily solving this kind of nonconvex problem. The interesting thing is that the proposed methods do not require the development of a customized solver and work well with any existing solver able to solve conventional GP problems. Some considerations on the robustness issue are also presented. Various optimization problems are considered to illustrate the ability of the proposed methods for solving a QGP problem. Comparison with previously published work is also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.