Abstract
Spikes form an interesting class of 3-connected matroids of branch-width 3. We show that some computational problems are hard on spikes with given matrix representations over infinite fields. Namely, the question whether a given spike is the free spike is co-NP-hard (though the property itself is definable in monadic second-order logic); and the task to compute the Tutte polynomial of a spike is #P-hard (even though that can be solved efficiently on all matroids of bounded branch-width which are represented over a finite field).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.