Abstract

In this paper, we present several Green’s functions of steady-state heat conduction in anisotropic plane media, including (1) an infinite plane, (2) a half-plane, (3) a bi-material plane, (4) an infinite plane with an elliptical hole or a straight crack, and (5) an infinite plane with an elliptical elastic inclusion. These solutions are obtained by using the link between anisotropic elasticity and heat conduction. We start with reducing the Stroh formalism for two-dimensional anisotropic elasticity to anti-plane deformation and then use the analogy between anti-plane deformation and heat conduction. These Green’s functions serve as fundamental solutions of boundary element method, and the derived temperature field and gradients on the boundary are used as input for thermoelastic analysis. The results of heat conduction and thermoelasticity are verified with analytical solutions or finite element solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.