Abstract

It is shown that the transition functions that give the global structure of the fiber bundle play an important role in the construction of the metric. The invariance properties of this metric under general gauge transformations are discussed and it is found that the usual requirement of a gauge-invariant metric leads to severe constraints on the gauge fields. To avoid them, it is shown that the metric should instead be covariant with respect to these transformations. Moreover the existence of global actions that are essential in the context of the consistency problem is also discussed. The presence of such actions is studied in both the principal and their associated bundles. In the case of a homogeneous bundle with G/H as the typical fiber, it is shown that a ‘‘spliced’’ bundle with G×N(H)/H as the structure group has to be used. The unified space is then taken as the bundle space of its associated bundle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.