Abstract
In this paper, we establish some generalized inequalities of the Hermite–Hadamard type using fractional Riemann–Liouville integrals for the class of s-convex functions in the first and second sense. We assume that second derivatives of these functions are convex and take on values at intermediate points of the interval under consideration. We prove that this approach reduces the absolute error of Hadamard-type inequalities by a multiple of the number of intermediate points. In a particular case, the obtained upper bounds for the Hadamard inequality coincide with those given in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.