Abstract
In this paper we investigate two new classes of torsion-free Abelian groups which arise in a natural way from the notion of a torsion-free Crawley group. A group G is said to be an Erdős group if for any pair of isomorphic pure subgroups H,K with G/H ⋟ G/K, there is an automorphism of G mapping H onto K; it is said to be a weak Crawley group if for any pair H,K of isomorphic dense maximal pure subgroups, there is an automorphism mapping H onto K. We show that these classes are extensive and pay attention to the relationship of the Baer-Specker group to these classes. In particular, we show that the class of Crawley groups is strictly contained in the class of weak Crawley groups and that the class of Erdős groups is strictly contained in the class of weak Crawley groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.