Abstract

We introduce a new family of nonperiodic tilings, based on a substitution rule that generalizes the pinwheel tiling of Conway and Radin. In each tiling the tiles are similar to a single triangular prototile. In a countable number of cases, the tiles appear in a finite number of sizes and an infinite number of orientations. These tilings generally do not meet full-edge to full-edge, but can be forced through local matching rules. In a countable number of cases, the tiles appear in a finite number of orientations but an infinite number of sizes, all within a set range, while in an uncountable number of cases both the number of sizes and the number of orientations is infinite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.