Abstract
Three generalizations of the criss-cross method for quadratic programming are presented here. Tucker’s, Cottle’s and Dantzig’s principal pivoting methods are specialized as diagonal and exchange pivots for the linear complementarity problem obtained from a convex quadratic program A finite criss-cross method, based on least-index resolution, is constructed for solving the LCP. In proving finiteness, orthogonality properties of pivot tableaus and positive semidefiniteness of quadratic matrices are used In the last section some special cases and two further variants of the quadratic criss-cross method are discussed. If the matrix of the LCP has full rank, then a surprisingly simple algorithm follows, which coincides with Murty’s ‘Bard type schema’ in the P matrix case
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.