Abstract

Generalizing duality theorem of V.V. Fedorchuk [V.V. Fedorchuk, Boolean δ-algebras and quasi-open mappings, Sibirsk. Mat. Zh. 14 (5) (1973) 1088–1099; English translation: Siberian Math. J. 14 (1973) 759–767 (1974)], we prove Stone-type duality theorems for the following four categories: the objects of all of them are the locally compact Hausdorff spaces, and their morphisms are, respectively, the continuous skeletal maps, the quasi-open perfect maps, the open maps, the open perfect maps. In particular, a Stone-type duality theorem for the category of compact Hausdorff spaces and open maps is obtained. Some equivalence theorems for these four categories are stated as well; two of them generalize the Fedorchuk equivalence theorem [V.V. Fedorchuk, Boolean δ-algebras and quasi-open mappings, Sibirsk. Mat. Zh. 14 (5) (1973) 1088–1099; English translation: Siberian Math. J. 14 (1973) 759–767 (1974)].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.