Abstract

Flexible risers are complex structures composed of several concentric polymeric and steel armor layers that withstand static and dynamic loads applied by the floating production vessel and by the ocean environment. Determining the response of these structures when subjected to axisymmetric loadings (i.e., any combination of traction, torsion, and internal or external pressures) is an important task for the local structural analysis since it provides probable values for the loading distribution along the layers and, thus, allowing estimating the expected life of a riser using fatigue tools. Although finite element models have been increasingly used to accomplish this task in the last years, the simplicity and the reasonable accuracy provided by analytical models can be seen as reasons that justify their continued use, at least in the initial cycles of the design. However, any analytical model proposed for such a task must be checked with well-conducted experimental results in order to be considered as an acceptable analysis tool. The aims of this article are twofold: (i) to present the main results of experimental tests involving both internal pressure and traction loadings on a 63.5 mm (2.5 in.) flexible riser, carried out at the Institute for Technological Research of São Paulo (IPT), which can be used as a means of checking finite element or analytical models proposed by other researchers, and (ii) to compare some results obtained experimentally with those predicted by an analytical model which can also include any combination of axisymmetric loadings. Besides presenting full data concerning the internal structure of the riser, the experimental procedures used to perform the tests and the main results (e.g., Force × Displacement curves) are also presented. A brief discussion about the validity of some hypotheses that are usually assumed by analytical models found in the technical literature is made.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call