Abstract

Reflection and transmission of waves by impedance transitions from a constant input to a constant output characteristic impedence are considered. Several fundamental properties are explored, primarily for impedance transitions with piece-wise constant characteristic impedance in an arbitrary number N of intervals of equal length. For example, the following properties are shown: (i) The relative momentum transmission depends only on the ratio of output to input characteristic impedance. (ii) For a given impedance transition there are at most, and generally exactly, 2 N different transitions, including the original one, with identical transmission properties. (iii) For monotoneous impedance transitions the efficiency of energy transmission is minimized by one with an abrupt change in characteristic impedance. (iv) There exists an optimal impedance transition, with a certain antisymmetry, which maximizes the efficiency of energy transmission for a given incident wave of finite duration and energy. Several of the results can be extended to more general classes of impedence transitions. Simple illustrative examples are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.