Abstract

Intracellular electrophysiological recording showed that acetylcholine (1 mumol l-1) and histamine (2 mumol l-1) depolarized trachealis cells and often increased the frequency of slow waves. Higher concentrations of these agents caused greater depolarization and abolition of slow waves. Marked depolarization was often associated with the appearance of electrical 'noise'. These electrical phenomena were accompanied by tonic tension development in a contiguous segment of trachea. Electrical 'noise' and tension evoked by high concentrations of acetylcholine or histamine could be dissipated by washing the agonist from the tissue. Acetylcholine-induced 'noise' was resistant to tetrodotoxin (3 mumol l-1) and to hexamethonium (1 mmol l-1). Neither acetylcholine (10-1,000 mumol l-1) nor histamine (2-200 mumol l-1) increased the lanthanum-resistant calcium fraction of muscle-containing strips of trachea. It is concluded that, while developing tension under the influence of acetylcholine or histamine, trachealis cells depolarize markedly but there is relatively little cellular influx of Ca2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.