Abstract

Magnetic field singularities detected earlier as the self-intersection points of the F = 0 curves/surfaces are studied (where F is a certain differential factor calculated in the reference frame of the magnetic field at the given point); these singularities can be considered to be sources of the energy release in solar flares. Two types of such singularities, called transition points (TPs), have been found: the first type (TP1) corresponds to an intersection of the same type of components (terms) of the divergence of the magnetic field, and the second type (TP2) to the intersection of dissimilar components. There are some discontinuous spatial processes at these singularities, which produce jumps in the components of the divergence of the magnetic field (and their signs). TP2 singularities should result in much stronger effects than those resulting from TP1 singularities, which should give rise to the most powerful solar flares. The singularities studied are also compared with the null point of the magnetic field, when it exists. In particular, a model magnetic field containing a null point is considered. It is shown that the TP singularities do not coincide with the null point, but can be located in its vicinity; in the case considered, the TP1 singularity is located fairly close to the null point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call