Abstract

Airborne L‐band radiometric measurements were conducted over the Konza Prairie near Manhattan, Kansas, in the summers of 1985, 1987, 1988, and 1989 to study the relationship among surface microwave emission, soil moisture, and vegetation cover. The annual surface treatments that were applied to the watersheds in the experimental area appeared to show a significant impact on the surface microwave emission. A watershed that was burned every year showed a better sensitivity to soil moisture variation than those burned less frequently. This feature persisted even though the radiometric measurements were made over those watersheds that were burned in the same year. It was concluded that the burning process might not completely remove a thatch layer of efficient microwave absorption, which was developed through years of accumulation of senescent vegetation. Results from the analysis of these radiometric data sets also suggest the need of an adequate estimation of vegetation biomass in order to obtain a reliable retrieval of surface soil moisture from L‐band radiometric measurements. On the basis of the data acquired from the 1987 and 1989 field campaigns, the push broom microwave radiometer (PBMR) measurements are likely to give errors of the order of ±0.065 g/cm3 in surface soil moisture estimation if there are no measurements of vegetation biomass. Measurements of vegetation biomass to an accuracy of ±0.46 kg/m2 improve the corresponding PBMR estimation of surface soil moisture to an accuracy of ±0.032 g/cm3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.