Abstract

It is well known that the traditional Jensen inequality is proved by lower bounding the given convex function, f(x), by the tangential affine function that passes through the point (E{X},f(E{X})), where E{X} is the expectation of the random variable X. While this tangential affine function yields the tightest lower bound among all lower bounds induced by affine functions that are tangential to f, it turns out that when the function f is just part of a more complicated expression whose expectation is to be bounded, the tightest lower bound might belong to a tangential affine function that passes through a point different than (E{X},f(E{X})). In this paper, we take advantage of this observation by optimizing the point of tangency with regard to the specific given expression in a variety of cases and thereby derive several families of inequalities, henceforth referred to as "Jensen-like" inequalities, which are new to the best knowledge of the author. The degree of tightness and the potential usefulness of these inequalities is demonstrated in several application examples related to information theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.