Abstract
Let n be an integer exceeding one and M be a matroid having at least n + 2 elements. In this paper, we prove that every n-element subset X of E( M) is in an ( n + 1)-element circuit if and only if (i) for every such subset, M X is disconnected, and (ii) for every subset Y with at most n elements, M Y is connected. Various extensions and consequences of this result are also derived including characterizations in terms of connectivity of the 4-point line and of Murty's Sylvester matroids. The former is a result of Seymour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.