Abstract

Pattern recognition models for the perception of complex tones assume that the pitch of a complex tone is derived from more primary sensations, such as the pitches of the individual partials. Thus a complex tone will only have a well-defined pitch when at least one partial in the complex is separately perceptible. Models based on time-interval measurements, on the other hand, require an interaction of the original components, so that the periodicity of the input waveform is preserved. In Experiment I the relative intensity of a “target” tone, necessary for its identification in the presence of either one or two “masking” tones, was determined, over a range of frequencies. This intensity changes abruptly at around 5 kHz, a result consistent with the idea that the pitches of pure tones are determined by temporal mechanisms for frequencies up to 5 kHz, and by place mechanisms for frequencies above this. In Experiments II and III the audibility of the partials in a multi-tone complex was measured as a function of their frequency separation and compared with the range of conditions over which a complex stimulus produced a clear pitch sensation, using the same set of subjects in each experiment. It was found that under some conditions the complex had a well-defined pitch when none of the individual partials was separately audible. This is contrary to the predictions from the pattern recognition models. The effects of masking noise in the frequency region below the complex, and the results of individual subjects, also did not conform with the predictions from these models. Such models are not ruled out, however, for low harmonic numbers, or for stimuli containing only a small number of partials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call