Abstract

Experiments on a thermally ionized argon plasma suggest that applying a Lorentz force by means of orthogonal electric and magnetic fields to an electrically conducting fluid flow imposes necessary but not sufficient conditions for acceleration. There are, in fact, many combinations of current and magnetic field which cause decelerations of the fluid. The deceleration arises from a retarding force which may be larger than the applied Lorentz force. The retarding force causing the deceleration is a consequence of currents circulating completely within the fluid. These currents arise from differences in velocity between the central and wall regions of the duct which interact with the imposed magnetic field to produce differences in induced voltages. The observed physical effects of the circulating currents cause a loss in velocity in the central region of the duct, an increase in thermal energy in the sidewall region, and little change in thermal energy near the electrode wall region. For similar velocity profiles, the adverse effects appear to be related to the product of electrical conductivity and velocity, and performance as an accelerator appears to be controlled by the Hoffman loading parameter (i.e., the ratio of the applied to the induced currents).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call