Abstract
Financial fraud detection is an important problem with a number of design aspects to consider. Issues such as algorithm selection and performance analysis will affect the perceived ability of proposed solutions, so for auditors and researchers to be able to sufficiently detect financial fraud it is necessary that these issues be thoroughly explored. In this paper we will revisit the key performance metrics used for financial fraud detection with a focus on credit card fraud, critiquing the prevailing ideas and offering our own understandings. There are many different performance metrics that have been employed in prior financial fraud detection research. We will analyse several of the popular metrics and compare their effectiveness at measuring the ability of detection mechanisms. We further investigated the performance of a range of computational intelligence techniques when applied to this problem domain, and explored the efficacy of several binary classification methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.