Abstract

Some classic expansions of the elliptic motion — cosmE and sinmE — in powers of the eccentricity are extended to highly eccentric orbits, 0.6627...<e<1. The new expansions are developed in powers of (e−e*), wheree* is a fixed value of the eccentricity. The coefficients are given in terms of the derivatives of Bessel functions with respect to the eccentricity. The expansions have the same radius of convergence ρ(e*) of the extended solution of Kepler's equation, previously derived by the author. Some other simple expansions — (a/r), (r/a), (r/a) sinv, ..., — derived straightforward from the expansions ofE, cosE and sinE are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.