Abstract

We study solutions of the Volterra lattice satisfying the stationary equation for its non-autonomous symmetry. It is shown that the dynamics in $t$ and $n$ are governed by the continuous and discrete Painlev\'e equations, respectively. The class of initial data leading to regular solutions is described. For the lattice on the half-line, these solutions are expressed in terms of the confluent hypergeometric function. The Hankel transform of the coefficients of the corresponding Taylor series is computed on the basis of the Wronskian representation of the solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call