Abstract

1. The problem of finding the number of space cubic curves which pass through p given points and have 6 – p given lines as chords has been solved by several different methods. The similar problem, in space of four dimensions, of the number of rational quartic curves which pass through p given points and have 7 – p given trisecant planes has been solved for p > 1 by F. P. White and for p = 1 by J. A. Todd. In a recent paper I discussed a similar problem for elliptic quartic curves. My present object is to apply the method of that paper to the problems mentioned above and to obtain two other sets of numbers which I believe to be new. They are (1) the number of rational normal quartic curves which have three assigned chords, pass through p assigned points, and have 3 – p assigned trisecant planes; (2) the number of curves of intersection of three quadrics in [4] which have a suitable number of assigned points and chords. The evaluation of Schubert symbols which occur in the work is done by means of a formula due to Giambelli‖. This formula is stated in a more simple form in a note at the end of this paper (7).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.