Abstract

We investigate the effects of lateral heterogeneities in the upper mantle on the calculation of postglacial land uplift. For the model calculations we use a commercial finite-element code, which enables us to solve the equations governing a layered, isotropic, incompressible, Maxwell-viscoelastic half-space with laterally varying layer thicknesses and physical properties. Following previous investigations performed by Sabadini, Yuen & Portney (1986) and Gasperini & Sabadini (1989), we extend their results using a more realistic loading history and different earth models. We then focus our attention on the question whether lateral heterogeneities in the upper mantle can be modelled correctly using a set of homogeneous earth models. To this end, a comparison of model calculations using both laterally homogeneous and heterogeneous earth models is performed. We find that lateral heterogeneities in the upper mantle significantly influence the calculated postglacial land uplift. The resolving power of relative sea-level observations for the prescribed lateral heterogeneities used in this study is mainly focused on observations around the load margin and outside the glaciated areas, where differences in predicted land uplift between individual models are large enough to be resolved by observations. We can qualitatively determine lateral heterogeneities in the upper mantle using a set of laterally homogeneous earth models, if the geological structure, for example a continental margin, is known. However, in order to infer the correct values of lithospheric thickness and asthenospheric viscosity, we need to use laterally heterogeneous models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call