Abstract

Adaptive antennas are often implemented with the Applebaum-Howells-type adaptive processor usually include a hard limiter between each antenna port and its correlation mixer, primarily for dynamic range compression. Brennan and Reed [3] analyzed the effects of hard limiting, and their conclusions suggest that it does not degrade the steady-state performance of the adaptive processor. Standard and hard-limited processors are compared and it is shown that when the two types of processor have the same sensitivity threshold, the hard-limited one can fail to provide sufficient interference cancellation when the correlation matrix of input signals has two or more eigenvalues of differing magnitudes. The consequence of hard limiting is that (depending on the processor design parameters) the larger of two or more signals can capture the hard limiter, allowing the smaller signals to pass through the processor essentially unattenuated. It is also shown that when a hard-limited processor is designed to provide the same cancellation as a standard one, it must have essentially as large a dynamic range as the standard, processor; therefore, it offers no advantage of dynamic range compression. Moreover, the hard-limited processor lacks a constant sensitivity threshold, which can be a desirable feature of a standard processor. Specific examples are presented for identical-element array antennas and for multiple-beam antennas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call