Abstract

The article analyzes the economic aspects of reducing the production of americium during the transition from a single-component nuclear energy system (NES) based on thermal reactors in an open fuel cycle to a two-component system with thermal and fast reactors in a closed nuclear fuel cycle. Scenarios for the development of these systems in Russia up to the end of the century are modeled. Two methods are considered for reducing the production of americium in a two-component NES with fast sodium reactors. The first method, closing the fuel cycle for plutonium in BN reactors of SFR type, is based on the use of plutonium separated from spent nuclear fuel of thermal reactors with the shortest possible (according to technical specifications) time for MOX fuel preparation and use thus preventing the main part of plutonium-241 from decay into americium. The second way is transmutation of americium. The study was carried out by using the mathematical code CYCLE designed for modeling of the NES with closed nuclear fuel cycle (NFC). The technical and economic data used in the paper was taken from published studies of Russian specialists and materials of European Union specialists presented in the IAEA/INPRO SYNERGIES project. The results of the research show that the efficiency of closing the NFC by using plutonium from thermal reactors in MOX fuel of fast sodium reactors is comparable to the efficiency of the homogeneous transmutation considered in the paper. The combination of the americium accumulation prevention method and transmutation method might significantly reduce the rate of the americium accumulation in a nuclear energy system, but the estimated costs of the considered homogeneous transmutation can significantly worsen the economic performance of sodium fast reactors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call