Abstract
This paper examines a stochastic process for Bose-Einstein statistics that is based on Gibrat's Law (roughly: the probability of a new occurrence of an event is proportional to the number of times it has occurred previously). From the necessary conditions for the steady state of the process are derived, under two slightly different sets of boundary conditions, the geometric distribution and the Yule distribution, respectively. The latter derivation provides a simpler method than the one earlier proposed by Hill [J. Amer. Statist. Ass. (1974) 69, 1017-1026] for obtaining the Pareto Law (a limiting case of the Yule distribution) from Bose-Einstein statistics. The stochastic process is applied to the phenomena of city sizes and growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.