Abstract
In this paper a new error function designed on 3-dimensional special Euclidean group SE(3) is proposed for the guidance of a UAV (Unmanned Aerial Vehicle). In the beginning, a detailed 6-DOF (Degree of Freedom) aircraft model is formulated including 12 nonlinear differential equations. Secondly the definitions of the adjoint representations are presented to establish the relationships of the Lie groups SO(3) and SE(3) and their Lie algebras so(3) and se(3). After that the general situation of the differential equations with matrices belonging to SO(3) and SE(3) is presented. According to these equations the features of the error function on SO(3) are discussed. Then an error function on SE(3) is devised which creates a new way of error functions constructing. In the simulation a trajectory tracking example is given with a target trajectory being a curve of elliptic cylinder helix. The result shows that a better tracking performance is obtained with the new devised error function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.