Abstract
Let [Formula: see text] be a Cohen–Macaulay local ring. We prove that the [Formula: see text]th syzygy module of a maximal Cohen–Macaulay [Formula: see text]-module cannot have a semidualizing direct summand for every [Formula: see text]. In particular, it follows that [Formula: see text] is Gorenstein if and only if some syzygy of a canonical module of [Formula: see text] has a nonzero free direct summand. We also give a number of necessary and sufficient conditions for a Cohen–Macaulay local ring of minimal multiplicity to be regular or Gorenstein. These criteria are based on vanishing of certain Exts or Tors involving syzygy modules of the residue field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.