Abstract
The results of this paper concern the ‘large spectra’ of sets, by which we mean the set of points in ${\bb F}_p^{\times}$ at which the Fourier transform of a characteristic function $\chi_A$, $A\subseteq {\bb F}_p$, can be large. We show that a recent result of Chang concerning the structure of the large spectrum is best possible. Chang's result has already found a number of applications in combinatorial number theory.We also show that if $|A|=\lfloor {p/2}\rfloor$, and if $R$ is the set of points $r$ for which $|\hat{\chi}_A(r)|\geqslant \alpha p$, then almost nothing can be said about $R$ other than that $|R|\ll \alpha^{-2}$, a trivial consequence of Parseval's theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.