Abstract

In a number of time times models there are I(1) variables that appear in data sets in differenced from. This note shows that an emerging practice of assuming that observed data relates to model variables through the use of error when estimating these models can imply that there is a lack of co-integration between model and data variables, and also between data variables themselves. An analysis is provided of what the nature of the measurement error would need to be if it was desired to reproduce the same co-integration information as seen in the data. Sometimes this adjustment can be complex. It is very unlikely that measurement error can be described properly with the white noise shocks that are commonly used for measurement error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.