Abstract
For any closed smooth Riemannian manifold Weyl (Am J Math 61:461–472, 1939) has defined a sequence of numbers called today intrinsic volumes. They include volume, Euler characteristic, and integral of the scalar curvature. We conjecture that absolute values of all intrinsic volumes are bounded by a constant depending only on the dimension of the manifold, upper bound on its diameter, and lower bound on the sectional curvature. Furthermore we conjecture that intrinsic volumes can be defined for some (so called weakly smoothable) Alexandrov spaces with curvature bounded below and state few of the expected properties of them, particularly the behavior under the Gromov-Hausdorff limits. We suggest conjectural compactifications of the space of smooth closed connected Riemannian manifolds with given upper bounds on dimension and diameter and a lower bound on sectional curvature to which the intrinsic volumes extend by continuity. We discuss also known cases of some of these conjectures. The work is a joint project with Petrunin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.