Abstract
The discovery of grid cells in the entorhinal cortex (EC) of the rat (Hafting et al. 2005) has provided many hints of the mechanism of spatial computation in brain during animal movement. Since then, various experiments as well as computational modeling studies of grid cells have answered some of the key questions related to the properties of these cells. However, almost all of these studies are conducted on the rats and mice during their movement in horizontal space, and it is not clear whether the grid cells possess a three-dimensional firing field during movement in space that is either tilted or curved. In this paper, we make some predictions on the possibilities of three-dimensional shapes of grid fields by hypothesizing that they indeed possess such properties, and produce such three-dimensional fields during movement in tilted space. We show several polyhedral shapes that can be generated by our computational neural network model, and in case of movement in horizontal plane, our three-dimensional grid cell model is reduced to a two-dimensional model to generate grid fields similar to experimental findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.