Abstract

Abstract The existence of boundary baroclinic instability (as exemplified by the Eady or Charney problems) and internal baroclinic instability, which requires the potential vorticity gradient to take both signs in the fluid interior, is unified by regarding the boundary temperature gradients in the external problem as equivalent to infinitely thin sheets of nonzero potential vorticity gradient. It is shown that this analogy can be generalized from the quasi-geostrophic to the primitive equation systems. The linear instability problem on the sphere is examined using the primitive equations; the results are consistent with those of simple conceptual models where potential vorticity gradients are concentrated in thin sheets. The normal modes are integrated into the nonlinear regime, and it is shown that the low-level potential vorticity gradients evolve in a similar way to the surface temperature fields in the lifecycles of external modes. Frontal structures are absent, though the enstrophy cascade produces ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.