Abstract
In the first half of this paper we introduce a new method of examining the q-hook structure of a Young diagram, and use it to prove most of the standard results about q-cores and q-quotients. In particular, we give a quick new proof of Chung's Conjecture (2), which determines the number of diagrams with a given q-weight and says how many of them are q-regular. In the case where q is prime, this tells us how many ordinary and q-modular irreducible representations of the symmetric group there are in a given q-block. None of the results of section 2 is original. In the next section we give a new definition, the p-power diagram, which is closely connected with the p-quotient. This concept is interesting because when p is prime a condition involving the p-power diagram appears to be a necessary and sufficient criterion for the diagram to be p-regular and the corresponding ordinary irreducible representation of to remain irreducible modulo p. In this paper we derive combinatorial results involving the p-power diagram, and in a later article we investigate the relevant representation theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.