Abstract

Abstract. For a coloring set B ⊆ Zn, by considering the Fox n-coloring of any knot K and using the knot semigroup KS, we show that the set B is actually the same with the set C in the alternating sum semigroup AS(Zn, C). Then, by adapting some results on Fox n-colorings to AS(Zn, B), we obtain some new results over this semigroup. In addition, we present the existence of different homomorphisms (or different isomorphisms in some cases) between the semigroups KS and AS(Zn, B), and then obtained the number of homomorphisms is in fact a knot invariant. Moreover, for different knots K1 and K2 , we establish one can obtain a homomorphism or an isomorphism from the different knot semigroups K1S and K2S to the same alternating sum semigroup AS(Zn, B)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.