Abstract
Cholinergic neurons in the nucleus basalis of Meynert (nbM) receive cholinergic, GABAergic and monoaminergic synapses. Only few of these neurons display the sort of intense m2 immunoreactivity that would be expected if they were expressing m2 as their presynaptic autoreceptor. The depletion of cortical m2 in Alzheimer's disease (AD) appears to reflect the loss of presynaptic autoreceptors located on incoming axons from the nucleus basalis of Meynert (nbM) and also the loss of postsynaptic receptors located on a novel group of nitric oxide producing interstitial neurons in the cerebral cortex. The defect of cholinergic transmission in AD may enhance the neurotoxicity of amyloid β, leading to a vicious cycle which can potentially accelerate the pathological process. Because acetylcholine plays a critical role in regulating axonal growth and synaptic remodeling, the cholinergic loss in AD can perturb cortical plasticity so as to undermine the already fragile compensatory reserve of the aging cerebral cortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.