Abstract

Cavitation properties of liquid must be taken into consideration in the engineering design of hydraulic machines and hydro devices when there is a possibility that in their operation an absolute pressure in the liquid drops below atmospheric one, and for a certain time the liquid is in depression state. Cold boiling, which occurs at a comparatively low temperature under a reduced absolute pressure within or on the surface of the liquid is regarded as hydrostatic cavitation if the liquid is stationary or as hydrodynamic cavitation, if the liquid falls into conditions when in the flow cross-section there is a sharply increasing dynamic pressure and a dropping absolute pressure. In accordance with the theory of cavitation, the first phase of cavitation occurs when the absolute pressure of the degassed liquid drops to the saturated vapour pressure, and the air dissolved in the liquid, leaving the intermolecular space, is converted into micro-bubbles of combined air and becomes a generator of cavitation “nuclei”. A quantitative estimate of the minimum allowable absolute pressure in a real, fully or partially degassed liquid at which a hydrostatic cavitation occurs is of practical interest. Since the pressure of saturated vapour of a liquid is, to a certain extent, related to the forces of intermolecular interaction, it is necessary to have information on the cavitation properties of technical solutions, including air solution in a liquid, as a solute may weaken intermolecular bonds and affect the pressure value of the saturated solvent vapour. In the experiment to carry out vacuum degassing of liquids was used a hydraulic air driven vacuum pump. The paper presents hydrostatic and hydrodynamic degassing liquid processes used in the experiment. The experimental studies of the cavitation properties of technical liquids (sea and distilled water, saturated NaCl solution, and pure glycerol and as a 49/51% solution in water, mineral oil and jet fuel) enabled us to have an quantitative estimate of the absolute pressure in the allowable technical liquids and solutions, its dependence on the saturated vapour pressure, as well as to define the influence of a degree of the hydrodynamic degassing of liquid and the amount of its solute on the liquid tensile strength. The paper gives a comparative assessment of cavitation properties of liquids. When studying the cavitation properties of solutions it has been found that a level of the allowable absolute pressure in a solution exceeds that of in the solvent. It is suggested that the dissolved solid, liquid or gaseous substances weaken the intermolecular bonds of the solvent and increase the pressure of its saturated vapour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.