Abstract

We study the computational power of Piecewise Constant Derivative (PCD) systems. PCD systems are dynamical systems defined by a piecewise constant differential equation and can be considered as computational machines working on a continuous space with a continuous time. We show that the computation time of these machines can be measured either as a discrete value, called discrete time, or as a continuous value, called continuous time. We relate the two notions of time for general PCD systems. We prove that general PCD systems are equivalent to Turing machines and linear machines in finite discrete time. We prove that the languages recognized by purely rational PCD systems in dimension d in finite continuous time are precisely the languages of the (d-2) th level of the arithmetical hierarchy. Hence the reachability problem of purely rational PCD systems of dimension d in finite continuous time is Σd-2 -complete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.