Abstract

Abstract The large-scale tropical atmospheric circulation is analyzed in idealized aquaplanet simulations using an atmospheric general circulation model. Idealized sea surface temperatures (SSTs) are used as lower-boundary conditions to provoke modifications of the atmospheric general circulation. Results show that 1) an increase in the meridional SST gradients of the tropical region drastically strengthens the Hadley circulation intensity, 2) the presence of equatorial zonal SST anomalies weakens the Hadley cells and reinforces the Walker circulation, and 3) a uniform SST warming causes small and nonsystematic changes of the Hadley and Walker circulations. In all simulations, the jet streams strengthen and move equatorward as the Hadley cells strengthen and become narrower. Some relevant mechanisms are then proposed to interpret the large range of behaviors obtained from the simulations. First, the zonal momentum transport by transient and stationary eddies is shown to modulate the eddy-driven jets, which causes the poleward displacements of the jet streams. Second, it is found that the Hadley circulation adjusts to the changes of the poleward moist static energy flux and gross moist static stability, associated with the geographical distribution of convection and midlatitude eddies. The Walker circulation intensity corresponds to the zonal moist static energy transport induced by the zonal anomalies of the turbulent fluxes and radiative cooling. These experiments provide some hints to understand a few robust changes of the atmospheric circulation simulated by ocean–atmosphere coupled models for future and past climates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.