Abstract

Previous studies have examined the behavior of outlier detection rules for symmetric distributions that label as “outside” any observations that fall outside the interval [FL – k(Fu – FL), Fu + k(Fu – FL)], where FL and FU are functions of the order statistics estimating the 0.25 and 0.75 quantiles of the distribution underlying the i.i.d. sample. A measure of the performance of this type of rule is the “some-outside rate” per sample computed with respect to a given (usually Gaussian) null distribution. The “some-outside rate” (SOR) per sample is the probability that the sample will contain one or more observations labeled as “outside,” given that the null distribution is the true distribution. In this paper, asymptotic expansions of k = kn as a function of n that guarantee an asymptotically constant, prespecified SOR are given for a variety of symmetric null distributions including the Gaussian, double exponential, logistic, and Cauchy distributions. The main theorem also applies to the case of a nonsymmetric null distribution by slightly modifying the labeling rule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.