Abstract

In the framework of a dynamical (field-theoretical) interpretation of gravitation, it is shown that in the case of spherical collapse of a body to about R/sub g/ the energy radiated in the form of scalar gravitational waves may reach aboutMc/sup 2/. Instead of producing a black hole, the gravitational collapse will result in a powerful pulse (or train of pulses) of scalar gravitational radiation. This opens up new possibilities for interpreting supernova explosions and the high peculiar velocities of some O-B stars. Strong scalar radiation is also expected from the active nuclei of galaxies. The superluminal expansion observed in some compact extragalactic radio sources may be due to scalar radiation. The possibility of detecting scalar gravitational waves is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call