Abstract
Powder metallurgy (P/M) material subjected to plastic deformation results into densification, however the extended deformation would not only enhance the densification also supplements the strain hardening. Unlike fully dense material that would only undergo strain hardening while plastic deformation, the P/M material leads to pore closure as well; this phenomenon complicates the work hardening mechanism. The present study revealed that both strain and density configures strengthening of P/M preform, which respectively termed as matrix and geometric work hardening. An attempt has been made to delineate some aspects of work hardening behaviour with the influence of different aspect ratios of sintered and cold deformed copper alloy preforms. The preforms were initially prepared through conventional P/M route and finally subjected to cold upsetting under dry friction condition. A statistical analysis has also been introduced to study the quantitative impact of strain and density in the presence of aspect ratio on work hardening rate characteristics.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.