Abstract
The discrete mechanics formalism and equations are considered in the present work in order to establish the role played by representative motion equations on the study of turbulence in fluids. In particular, a set of differences related to the turbulent pressure, the dynamics of vorticity in two spatial dimensions, the turbulent dissipation or the divergence of acceleration are discussed compared to the classical continuous media and Navier-Stokes equations. A second part is devoted to presenting on a first example, the rigid rotational motion, the differences between discrete and continuum mechanics. A last section is devoted to simulating the turbulent channel flow at turbulent Reynolds number of Reτ = 590. It is demonstrated that discrete mechanics allow to recover accurately the mean velocity profiles of reference DNS and also to provide scale laws of the whole mean velocity profile from the wall to the center of the channel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Thermodynamique des interfaces et mécanique des fluides
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.