Abstract

In current underground mining using “open stoping” methods, it is common to backfill mined-out voids (“stopes”) using hydraulically placed backfill, which is commonly composed of tailings, to which cement is often added. Knowledge of the stress state within a backfilled stope is required for safe design of drawpoint barricades and for other operational reasons. This stress state depends, inter alia, on the degree of “arching” that occurs, resulting from the development of shear stress between the fill and the stope walls. This paper presents a numerical modelling study of aspects of the arching phenomenon, carried using the computer code Plaxis. The backfill is characterized using the Mohr–Coulomb soil model, and both dry backfill and saturated backfill are considered to completely cover the full spectrum of backfill types that are used in practice. It is shown that even with dry backfill, the behaviour is governed by a complex interaction between the soil parameters. The behaviour is more complex with saturated backfill, with a key parameter being the permeability of the backfill relative to the rate of filling — i.e., whether the backfilling operation can be considered to be “drained” or “undrained” or somewhere between these two extremes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.