Abstract

In this paper, we study several aspects of extremal spherical symmetric black hole solutions of four-dimensional N = 1 supergravity coupled to vector and chiral multiplets with the scalar potential turned on. In the asymptotic region, the complex scalars are fixed and regular which can be viewed as the critical points of the black hole and the scalar potentials with vanishing scalar charges. It follows that the asymptotic geometries are of a constant and nonzero scalar curvature which are generally not Einstein. These spaces could also correspond to the near horizon geometries which are the product spaces of a two anti-de Sitter surface and the two sphere if the value of the scalars in both regions coincide. In addition, we prove the local existence of nontrivial radius dependent complex scalar fields which interpolate between the horizon and the asymptotic region. We finally give some simple ℂn-models with both linear superpotential and gauge couplings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.