Abstract

The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order β ∈ (0, 1). The fundamental solution for the Cauchy problem is interpreted as a probability density of a self-similar non-Markovian stochastic process related to a phenomenon of sub-diffusion (the variance grows in time sub-linearly). A further generalization is obtained by considering a continuous or discrete distribution of fractional time derivatives of order less than one. Then the fundamental solution is still a probability density of a non-Markovian process that, however, is no longer self-similar but exhibits a corresponding distribution of time-scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.