Abstract

Approximate solutions are given for stresses in a flexible cylindrical interlayer connecting concentric, rigid, cylindrical rims subjected to three loading cases: (i) rotation about the axis of symmetry; (ii) in-plane translation of the rims relative to each other; (iii) out-of-plane rotation of the rims relative to each other. The solutions are important for the multiple filament-wound composite rims used in energy storage flywheels, where the elastomeric interlayer idea has been proposed as a means of preventing high radial tensile stresses, which would otherwise break down the rims at less than optimal speeds. The compliances associated with the second and third loading cases are also given, establishing a simple means of analysis of the critical vibration frequencies of multirim flywheel rotors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.