Abstract

Aerodynamic flow control effected by interactions of surface-mounted synthetic (zero net mass flux) jet actuators with a local cross flow is reviewed. These jets are formed by the advection and interactions of trains of discrete vortical structures that are formed entirely from the fluid of the embedding flow system, and thus transfer momentum to the cross flow without net mass injection across the flow boundary. Traditional approaches to active flow control have focused, to a large extent, on control of separation on stalled aerofoils by means of quasi-steady actuation within two distinct regimes that are characterized by the actuation time scales. When the characteristic actuation period is commensurate with the time scale of the inherent instabilities of the base flow, the jets can effect significant quasi-steady global modifications on spatial scales that are one to two orders of magnitude larger than the scale of the jets. However, when the actuation frequency is sufficiently high to be decoupled from global instabilities of the base flow, changes in the aerodynamic forces are attained by leveraging the generation and regulation of 'trapped' vorticity concentrations near the surface to alter its aerodynamic shape. Some examples of the utility of this approach for aerodynamic flow control of separated flows on bluff bodies and fully attached flows on lifting surfaces are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.