Abstract

The purpose of this paper is to introduce a family of q‐Szász–Mirakjan–Kantorovich type positive linear operators that are generated by Dunkl's generalization of the exponential function. We present approximation properties with the help of well‐known Korovkin's theorem and determine the rate of convergence in terms of classical modulus of continuity, the class of Lipschitz functions, Peetre's K‐functional, and the second‐order modulus of continuity. Furthermore, we obtain the approximation results for bivariate q‐Szász–Mirakjan–Kantorovich type operators that are also generated by the aforementioned Dunkl generalization of the exponential function. Copyright © 2017 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.