Abstract

Renewal-type equations are frequently encountered in the study of reliability, warranty analysis, replacement and maintenance policies, and inventory control. Renewal equations usually do not have analytical solutions, and hence, bounds or approximations are very useful. In this article, analytical bounds are studied based on a simple iterative procedure which provides some analytical results and nice convergence properties when the number of iteration increases. Bounds and approximations are also investigated for a recursive algorithm for numerical computation. In addition, some interesting monotonicity properties are introduced and discussed. The approximation error, which is important for determining the stopping rule of the iterative procedure and the numerical algorithm, is also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.